
In this chapter, I’ll focus on the practicalities
of building a deployable host-based network

monitor capable of proxying and blocking
DNS traf!c from unrecognized processes or des-

tined for untrusted domains.
Chapter 7 covered the basic design of a DNS proxy capable of monitoring

traf!c via Apple’s NetworkExtension framework. There, however, I skipped over
many of the steps required to build a deployable tool, including obtaining
necessary entitlements and correctly bundling the extension within a host
application. This chapter will discuss these tasks, as well as ways of extending
a basic monitor, such as by parsing DNS queries and responses to block those
found on a block list.

You can !nd these capabilities and more in the open source DNSMonitor,
which is part of Objective-See’s tool suite (https://github.com/objective-see/
DNSMonitor). I recommend that you download the project or reference the
source code in the repository while reading the chapter, as the following
discussions often omit parts of the code for brevity.

13
D N S M O N I T O R

https://github.com/objective-see/DNSMonitor
https://github.com/objective-see/DNSMonitor

298!!!Chapter 13

Network Extension Deployment Prerequisites
Modern networking monitors, including DNSMonitor, make use of the net-
work extension framework. Because they’re packaged as system extensions
and run as stand-alone processes with elevated privileges, Apple requires
developers to entitle and bundle them in a very speci!c way. In Chapter 11,
we walked through the process of obtaining the Endpoint Security entitle-
ment and then creating a provisioning pro!le for the tool in the Apple
Developer portal. If you’re building a network extension, you’ll follow a
similar process, with a few key differences.

First, you’ll need to generate two provisioning pro!les, one for the
network extension and another for the application that contains and loads
the extension. Follow the process described in Chapter 11 to create an ID
for each item on the Apple Developer site. When asked to select capabilities
for the extension, check Network Extensions, which maps to the com.apple
.developer.networking.networkextension entitlement. Any developer can use
this entitlement (unlike the Endpoint Security entitlement, which requires
explicit approval from Apple). For the application, select that same capabil-
ity, as well as System Extension, which will allow the application to install,
load, and manage the extension. Once you’ve created both IDs, create the
two provisioning pro!les.

Now you must install each provisioning pro!le in Xcode. If you look
at the DNSMonitor project, you’ll see that it contains two targets: the exten-
sion and its host application. When you click either of these targets, the
Signing and Capabilities tab should provide an option to specify the rel-
evant provisioning pro!le. Apple’s developer documentation recommends
enabling manual signing by leaving the Automatically Manage Signing
option unchecked.1

The Signing and Capabilities tab will also show that the DNSMonitor
project has enabled additional capabilities for both the extension and
application that match those we speci!ed when building the provisioning
pro!le. The extension speci!es the Network Extensions capability, while
the app speci!es both Network Extensions and System Extensions. If you’re
building your own network extension, you’ll have to add these capabilities
manually by clicking the + next to Capabilities.

Behind the scenes, adding these capabilities applies the relevant entitle-
ments to each target’s entitlements.plist. Unfortunately, we must manually
edit these entitlements.plist !les. Adding the Network Extensions capability and
checking DNS Proxy will add the entitlement with a value of dns-proxy, but
we’ll need a value of dns-proxy-systemextension to deploy an extension signed
with a developer ID.2 Listing 13-1 shows this in the extension’s entitlements
.plist !le.

DNS Monitor!!!299

<?xml version="1.0" encoding="UTF-8"?>
...
<plist version="1.0">
<dict>
 <key>com.apple.developer.networking.networkextension</key>
 <array>
 <string>dns-proxy-systemextension</string>
 </array>
 ...

Listing 13-1: We must entitle network extensions and specify an extension type.

The !le includes the network extension entitlement as a key, along with
an array holding any extension types.

Packaging the Extension
Any tool that uses a network extension must implement it as a system exten-
sion, then structure itself in a speci!c way so that macOS can validate and
activate it. Speci!cally, Apple requires that any system extension be pack-
aged within a bundle, such as an application, in the bundle’s Contents/
Library/SystemExtensions/ directory. A provisioning pro!le must also autho-
rize the use of restricted entitlements, and we can’t embed provisioning
pro!les directly into a stand-alone binary.

For these reasons, DNSMonitor contains two components: a host applica-
tion and a network extension.3 To properly package the extension in Xcode,
we specify the application component dependency on the extension under
Build Phases. We set the destination to System Extensions so that macOS
will copy the extension into the application’s Contents/Library/SystemExtensions/
directory while building the application (Figure 13-1).

Figure 13-1: The application contains a build step to embed the
system extension.

Let’s now turn our attention to the extension’s Info.plist !le (Listing 13-2).

<?xml version="1.0" encoding=”UTF-8"?>
...
<plist version="1.0">
<dict>
 ...
 1 <key>CFBundlePackageType</key>

300!!!Chapter 13

 <string>$(PRODUCT_BUNDLE_PACKAGE_TYPE)</string>
 ...
 2 <key>NetworkExtension</key>
 <dict>
 3 <key>NEMachServiceName</key>
 <string>$(TeamIdentifierPrefix)com.objective-see.dnsmonitor</string>
 4 <key>NEProviderClasses</key>
 <dict>
 <key>com. apple. networkextension. dns- proxy</key>
 <string>DNSProxyProvider</string>
 </dict>
 </dict>
 ...

Listing 13-2: The extension’s Info.plist file contains various key-value pairs specific to network
extensions.

We set CFBundlePackageType to a variable 1 that the compiler will replace
with the project’s type, systemextension. The NetworkExtension key holds a dic-
tionary containing key and value pairs relevant to network extensions 2. The
NEMachServiceName key speci!es the name of the Mach service the extension
can use for XPC communications 3. Also, note the NEProviderClasses key,
which contains the network extension’s type and the name of the class within
DNSMonitor that implements the required network extension logic 4. In
Chapter 7, I mentioned that this class should implement NEDNSProxyProvider
delegate methods. We must also link the extension component against the
NetworkExtension framework.

The application’s entitlements.plist !le, shown in Listing 13-3, is fairly
similar to that of the extension.

<?xml version="1.0" encoding="UTF-8"?>
...
<plist version="1.0">
<dict>
 <key>com.apple.developer.networking.networkextension</key>
 <array>
 <string>dns-proxy-systemextension</string>
 </array>
 <key>com.apple.developer.system-extension.install</key>
 <true/>
 <key>com.apple.security.application-groups</key>
 <array>
 <string>$(TeamIdentifierPrefix)com.objective-see.dnsmonitor</string>
 </array>
</dict>
</plist>

Listing 13-3: The app’s entitlements.plist file also contains key-value pairs specific to
network extensions.

One difference between the two is the addition of the com.apple.developer
.system-extension.install entitlement, set to true. We indirectly added this
entitlement to the app’s provisioning pro!le when we granted it the System

DNS Monitor!!!301

Extension capability. The app needs this entitlement to install and activate
the network extension.

Tool Design
Now that I’ve explained the components of DNSMonitor, let’s focus on how
it operates, starting with launching the application.

The App
You can !nd the initialization logic for the app in the DNSMonitor/App/
main.m !le. After performing some basic argument parsing (for example,
checking whether the user invoked the app with the -h #ag to show the
default usage), the app retrieves the responsible parent’s bundle ID. If this
parent is the Finder or the Dock (the likely parents in scenarios where the
user double-clicked the app icon), the app displays an informative alert
explaining that DNSMonitor should run from the terminal.

Also, unless we run DNSMonitor from the Applications directory, when
the OSSystemExtensionRequest request:didFailWithError: delegate method
is invoked by the application to activate the extension, it will fail:4

ERROR: method '-[Extension request:didFailWithError:]' invoked with
<OSSystemExtensionActivationRequest: 0x600003a8f150>, Error Domain=
OSSystemExtensionErrorDomain Code=3 "App containing System Extension
to be activated must be in /Applications folder" UserInfo={NSLocalized
Description=App containing System Extension to be activated must be in
/Applications folder}

So, when run from the terminal, DNSMonitor checks that it’s executing
from the correct directory before loading the network extension compo-
nent. If not, it prints an error message and exits (Listing 13-4).

if(YES != [NSBundle.mainBundle.bundlePath hasPrefix:@"/Applications/"]) {
 ...
 NSLog(@"\n\nERROR: As %@ uses a System Extension, Apple requires it must
 be located in /Applications\n\n", [APP_NAME stringByDeletingPathExtension]);
 goto bail;
}

Listing 13-4: Checking whether the monitor is running from the /Applications directory

To pass captured DNS traf!c from the extension to the application so we
can display it to the user, we use the system log. In Listing 13-5, the applica-
tion initializes a custom log monitor with a predicate to match messages
written to the log by the (soon-to-be-loaded) network extension. It then
prints any received messages to the terminal.

302!!!Chapter 13

NSPredicate* predicate =
[NSPredicate predicateWithFormat:@"subsystem='com.objective-see.dnsmonitor'"];

LogMonitor* logMonitor = [[LogMonitor alloc] init];
[logMonitor start:predicate level:Log_Level_Default eventHandler:^(OSLogEventProxy* event) {
 ...
 NSLog(@"%@", event.composedMessage);
}];

Listing 13-5: The app’s log monitor ingests DNS traffic captured in the extension.

In other cases, you might want to use a more robust mechanism, such
as XPC, to pass data back and forth between the extension and the app, but
for a simple command line tool, the universal logging subsystem suf!ces.

Before loading the network extension, the app sets up a signal handler
for the interrupt signal (SIGINT). As a result, when the user presses $%&L-C,
the app can unload the extension and gracefully exit (Listing 13-6).

1 signal(SIGINT, SIG_IGN);

dispatch_source_t source = dispatch_source_create(DISPATCH_SOURCE_TYPE_SIGNAL,
2 SIGINT, 0, dispatch_get_main_queue());
3 dispatch_source_set_event_handler(source, ^{
 ...
 stopExtension();
 exit(0);
});
dispatch_resume(source);

Listing 13-6: Setting up a custom interrupt signal handler

First, the code ignores the default SIGINT action 1. Then it creates a
dispatch source for the interrupt signal 2 and sets a custom handler with
the dispatch_source_set_event_handler API 3. The custom handler invokes a
helper function, stopExtension, to unload and uninstall the network exten-
sion before exiting. Though not shown here, the monitor can be executed
with a command line option to skip unloading the extension when it exits.
This alleviates the need to restart, and thus reapprove, the extension each
time the monitor is restarted.

Finally, the app installs and activates the network extension. Because I
covered this process in full detail in Chapter 7, I won’t repeat it here, other
than to note that it involves making an OSSystemExtensionRequest request and
con!guring an NEDNSProxyManager object. You can !nd the full installation
and activation code in DNSMonitor’s App/Extension.m !le.

With the network extension running, the app tells the current run loop
to continue until it receives an interrupt signal from the user, as it needs to
hang around to print out captured DNS traf!c.

The Extension
Behind the scenes, when an application invokes the APIs to install and
activate a network extension, macOS copies the extension from the app’s

DNS Monitor!!!303

Contents/Library/SystemExtensions/ directory into a privileged directory,
/Library/SystemExtensions/<UUID>/, validates it, then executes it with root
privileges. Run the ps command to show the activated network extension’s
process information, such as its privilege level, process ID, and path:

% ps aux
...
root 38943 ... /Library/SystemExtensions/8DC3FC3A-825E-49C3-879B-6B0C08388238/
com.objective-see.dnsmonitor.extension.systemextension/Contents/MacOS/com
.objective-see.dnsmonitor.extension

Once loaded, DNSMonitor’s extension opens a handle to the universal
logging subsystem via the os_log_create API, as it passes captured DNS traf-
!c to the app using log messages. The logging API takes two parameters
that allow you to specify a subsystem and a category (Listing 13-7).

#define BUNDLE_ID "com.objective-see.dnsmonitor"

os_log_t logHandle = os_log_create(BUNDLE_ID, "extension");

Listing 13-7: Opening a log handle in the extension

By specifying a subsystem or a category, you can easily create predicates
that return only certain messages, as we did in the application (Listing 13-5).
Next, the extension invokes the NEProvider class’s startSystemExtensionMode
method, which you’ll recall will instantiate the class speci!ed under the
NEProviderClasses key in the extension’s Info.plist !le. The extension uses
its DNSProxyProvider class, which inherits from the NEDNSProxyProvider class
(Listing 13-8).

@interface DNSProxyProvider : NEDNSProxyProvider
 ...
@end

Listing 13-8: The interface for the DNSProxyProvider class

In Chapter 7, I described how a DNS monitor could implement the
various NEDNSProxyProvider methods, such as the all-important handleNewFlow:,
which will be automatically invoked for all new DNS #ows. As such, I won’t
cover this again here, though you can !nd the full code in the Extension/
DNSProxyProvider.m !le.

Previous chapters didn’t cover how the extension sends the message
to the app via the log, builds a DNS cache, and blocks speci!c requests or
responses. Let’s explore these topics in more detail.

Interprocess Communication
I mentioned that when DNSMonitor’s network extension receives a new
DNS request or response, it uses the universal logging subsystem to send
the message to the app’s log monitor, which prints it to the terminal. You
can !nd the extension logic to handle the writing of DNS traf!c to the log
in a helper method named printPacket (Listing 13-9).

304!!!Chapter 13

-(void)printPacket:(dns_reply_t*)packet flow:(NEAppProxyFlow*)flow {
 ...
 char* bytes = NULL;
 size_t length = 0;

 1 NSMutableDictionary* processInfo = [self getProcessInfo:flow];

 os_log(logHandle, "PROCESS:\n%{public}@\n", processInfo);

 2 FILE* fp = open_memstream(&bytes, &length);
 3 dns_print_reply(packet, fp, 0xFFFF);
 4 fflush(fp);

 os_log(logHandle, "PACKET:\n%{public}s\n", bytes);

 fclose(fp);
 free(bytes);
}

Listing 13-9: Printing a DNS packet to the universal log

A helper function named getProcessInfo: creates a dictionary that
describes the process responsible for generating the DNS traf!c. The code
then writes the dictionary to the log using the os_log API 1.

Writing the bytes of the DNS packet is a bit more complicated, because
the macOS dns_print_reply API, which formats raw DNS packets, expects to
print to a !le stream pointer (FILE *), such as stdout. On the other hand,
universal logging APIs take an os_log_t instead of a FILE *. We circumvent
this minor obstacle by having dns_print_reply indirectly write to a memory
buffer, which we can log via os_log.

To make dns_print_reply write to a buffer, we pass it a !le handle that,
unbeknownst to the function, is backed by a buffer, created thanks to the
often-overlooked open_memstream API 2. The dns_print_reply function formats
the raw DNS packet and then happily writes it via the !le handle 3. After
invoking fflush to ensure all buffered data is written out to the underlying
memory 4, we write the parsed DNS packet to the universal log with a sec-
ond call to os_log. As I previously noted, the log monitor in the app compo-
nent can now ingest the message and print it to the user’s terminal.

Building and Dumping DNS Caches
It always surprises me that macOS doesn’t provide a way to dump cached
DNS resolutions, which contain the requested domains and resolved IP
addresses. As you’ll see in this section, however, DNS cache dumping is easy
enough to implement in a DNS monitor.

When the DNSMonitor network extension starts, it creates a global array
to store dictionaries of the mappings between DNS requests (questions)
and their responses (answers). It implements this logic in a helper method
named cache:, which takes a parsed DNS response packet that contains both
the questions and any answers.

DNS Monitor!!!305

The majority of code within the cache: method is dedicated to extract-
ing the questions and answers from the DNS response packet, which can
contain multiples of both. We covered this process in Chapter 7, so we
won’t repeat it here, but you can !nd the method’s full code in Extension/
DNSProxyProvider.m.

Once we’ve extracted all questions and answers from the DNS response
packet, we add them to the global cache array, named dnsCache (Listing 13-10).

-(void)cache:(dns_reply_t*)packet {
 NSMutableArray* answers = [NSMutableArray array];
 NSMutableArray* questions = [NSMutableArray array];

 // Code to extract questions and answers from DNS response packet removed

 1 @synchronized(dnsCache) {
 2 if(dnsCache.count >= MAX_ENTRIES) {
 [dnsCache removeObjectsInRange:NSMakeRange(0, MAX_ENTRIES/2)];
 }

 3 for(NSString* question in questions) {
 if(0 != answers.count) {
 4 [dnsCache addObject:@{question:answers}];
 }
 }
 ...
 }
}

Listing 13-10: Saving DNS questions and answers to a cache

As DNS responses can arrive and be processed asynchronously, we
synchronize access to the global cache by wrapping it in a @synchronized
block 1. Before adding another entry, the code checks that the cache hasn’t
grown too large. If it has, it rather bluntly prunes the !rst half to evict the
oldest ones 2. Finally, it adds an entry for each question and its answers 3
using the NSMutableArray’s addObject: method. Note that the snippet of code
@{question:answers} uses the Objective-C shorthand @{} to create a dictionary
whose key is the question and whose value is a list of answers 4.

At this point, the extension is caching DNS questions and answers. The
entries generated by resolving NoStarch.com and Objective-See.org would
look like the following:

[
 {nostarch.com:["104.20.120.46", "104.20.121.46"]},
 {objective-see.org:["185.199.110.153", "185.199.109.153",
 "185.199.111.153", "185.199.108.153"]}
]

To facilitate the dumping of this cache, the extension installs a signal
handler for the signal SIGUSR1, otherwise known as user signal 1 (Listing 13-11).

306!!!Chapter 13

signal(SIGUSR1, dumpDNSCache);

Listing 13-11: Installing a signal handler for user signal 1

Now, any adequately privileged process on the system can send a SIGUSR1
to the extension. Here’s how to do this manually in the terminal:

% sudo kill -SIGUSR1 `pgrep com.objective-see.dnsmonitor.extension`

The kill shell command benignly sends a SIGUSR1 to the extension,
whose process ID we !nd via pgrep. Because the extension is running with
root privileges, we must elevate our privileges with sudo to deliver a signal.

As the code in Listing 13-11 showed, the extension sets the handler for
SIGUSR1 to a function named dumpDNSCache. Let’s take a look at this function.
Shown in Listing 13-12, it straightforwardly writes each cache entry to the
universal log.

void dumpDNSCache(int signal) {
 for(NSDictionary* entry in dnsCache) {
 1 NSString* question = entry.allKeys.firstObject;
 2 os_log(logHandle, "%{public}@:%{public}@", question, entry[question]);
 }
 ...
}

Listing 13-12: When the code receives a SIGUSR1 signal, it dumps the cache to the log.

In a for loop, the code iterates over all entries in its global DNS cache.
Recall that this cache is an array of dictionaries. Each entry’s dictionary
contains a single key representing the DNS question, and the code extracts
it with the firstObject property of the allKeys array 1. Then, using os_log, it
writes the question and the corresponding answers 2. Note the use of the
public keyword, which tells the logging subsystem not to redact the cache
data being logged.

When you send a SIGUSR1 to the extension while the DNSMonitor appli-
cation component is running, it will automatically ingest the log message
containing the dumped cache and print it out:

Dumping DNS Cache:
DNSMonitor[2027:25144] www.apple.com:(
 "23.2.84.211"
)
DNSMonitor[2027:25144] nostarch.com:(
 "104.20.120.46",
 "104.20.121.46"
)
DNSMonitor[2027:25144] objective-see.org:(
 "185.199.111.153",
 "185.199.110.153",
 "185.199.109.153",
 "185.199.108.153"
)

DNS Monitor!!!307

Because the extension writes the items in its cache to the universal log,
you can also view these messages directly via the log command:

% log stream --predicate="subsystem='com.objective-see.dnsmonitor'"

I recommend specifying the !lter predicate, however, because otherwise,
you’ll be inundated with irrelevant log messages from the rest of the system.

Blocking DNS Traf!c
So far, we’ve focused on passive actions, such as printing DNS requests and
responses and dumping an extension-built cache. But what if we wanted
to extend the monitor to block certain traf!c? Chapter 7 covered Apple’s
of!cial way of blocking traf!c using a network extension that implements a
!lter data provider to allow, drop, or pause network #ows. Objective-See’s
open source !rewall LuLu takes this approach.5

It turns out we can also block DNS traf!c using an NEDNSProxyProvider
object. Because we’re already proxying all DNS traf!c, nothing stops
us from closing any #ow we so choose. A bene!t of sticking with the
NEDNSProxyProvider class is that the system routes only DNS traf!c through
the extension. Because we’re not interested in other types of traf!c, this
keeps our code ef!cient. On the other hand, a !lter data provider would
make us responsible for examining and responding to all network #ows.

One simple approach to specifying what DNS traf!c to block is to use
a block list. This block list could contain the domains and IP addresses
of known malware command-and-control servers, unscrupulous internet
service providers, or even servers that track users or display ads. Whenever
an application attempts to resolve a domain, macOS will proxy the request
through the extension, which can examine the request and block it if the
domain is on the list. On the #ip side, once a remote DNS server has pro-
cessed a request and resolved the domain, macOS will proxy the response
back through the extension before sending it to the application that made
the original request. This gives the extension a chance to examine the
response and block it if it contains a banned IP address.

You can !nd the logic to block a domain or IP address in the extension,
in a method named shouldBlock:. This method accepts a parsed DNS packet
of type dns_reply_t (used for both requests and responses) and returns
a Boolean to indicate whether to block it. The method’s logic is rather
involved, as it must handle both IPv4 and IPv6, so I won’t show its entire
code here. Listing 13-13 includes the part of the method that checks whether
requests contain any domains on the block list.

-(BOOL)shouldBlock:(dns_reply_t*)packet {
 BOOL block = NO;
 dns_header_t* header = packet->header;

 if(DNS_FLAGS_QR_QUERY == (header->flags & DNS_FLAGS_QR_MASK)) { 1
 for(uint16_t i = 0; i < header->qdcount; i++) { 2

308!!!Chapter 13

 NSString* question = [NSString stringWithUTF8String:packet->question[i]->name]; 3
 if(YES == [self.blockList containsObject:question]) { 4
 block = YES;
 goto bail;
 }
 }
 }
 ...

bail:
 return block;
}

Listing 13-13: Checking for domains to block

The code !rst initializes a dns_header_t pointer to the header of the
parsed DNS packet. De!ned in Apple’s dns_util.h !le, it contains #ags (to
indicate the type of DNS packet) and various counts, such as the number of
questions and answers:

typedef struct {
 uint16_t xid;
 uint16_t flags;
 uint16_t qdcount;
 uint16_t ancount;
 uint16_t nscount;
 uint16_t arcount;
} dns_header_t;

The code in Listing 13-13 checks the header’s flags member to see
whether the DNS_FLAGS_QR_QUERY bit is set 1. This #ag indicates that the DNS
packet is a query containing one or more domains to resolve. (You won’t
!nd constants such as DNS_FLAGS_QR_QUERY in any header !le, as Apple de!nes
them in dns_util.c, so you might want to copy them directly into your own
code.) Assuming the DNS packet contains a query, the code then iterates
over each domain in the request 2. The number of domains is stored in the
qdcount member of the header structure, while each domain to be resolved
can be found in the packet’s question array. The code extracts each domain
and converts it to a more manageable Objective-C string object 3 before
checking whether it matches any of the items in the global block list 4. If
so, the code sets a #ag, breaks, and returns.

Though not shown here, the code to check a response packet is similar.
Response packets list the number of answers in the ancount member of the
header structure and provide the answers themselves in the answer array.
Apple de!nes the dns_resource_record_t structure to store these answers in
the dns_util.h header !le. This structure contains, among other things, a
dnstype member, which speci!es the answer’s type, such as A or CNAME. So, to
extract an IPv4 address from a DNS A record into an Objective-C object, you
might write code similar to Listing 13-14.

DNS Monitor!!!309

if(ns_t_a == packet->answer[i]->dnstype) {
 NSString* address =
 [NSString stringWithUTF8String:inet_ntoa(packet->answer[i]->data.A->addr)];

 // Add code here to process the extracted answer (IP address).
}

Listing 13-14: Extracting an answer from a DNS A record

If a question or an answer matches an entry in DNSMonitor’s global block
list, the shouldBlock: method returns YES, the Objective-C equivalent of true.

The location of the shouldBlock: method’s invocation dictates how the
#ow closes. For example, it’s easy to block a question, as DNSMonitor is
really a proxy that is responsible for making the actual connection to the
remote DNS server and thus we can close the local #ow using the close
WriteWithError: method (Listing 13-15).

BOOL block = [self shouldBlock:parsedPacket];
if(YES == block) {
 [flow closeWriteWithError:nil];
 return;
}

Listing 13-15: Closing a local flow

To block an answer, we should make sure to also clean up the remote
connection with the DNS server that provided the answer (Listing 13-16).

nw_connection_receive(connection, 1, UINT32_MAX, ^(dispatch_data_t content,
nw_content_context_t context, bool is_complete, nw_error_t receive_error) {
 ...
 BOOL block = [self shouldBlock:parsedPacket];
 if(YES == block) {
 [flow closeWriteWithError:nil];
 nw_connection_cancel(connection);
 return;
 }
});

Listing 13-16: Closing a remote flow

DNSMonitor uses the nw_connection_receive API to proxy responses. Thus,
to block any responses, it !rst closes the #ow and then calls nw_connection
 _cancel to cancel the connection.

For completeness, I should mention that you could also handle DNS
blocking by returning a response with the response code set to what is
known as a name error or, more simply, NXDOMAIN. Such a response would tell
the requestor that the domain wasn’t found, meaning the resolution failed.
DNSMonitor takes this approach when executed with the -nx command
line option.

To generate such a response, you could take the DNS request or
response packet and modify the #ags in its header in the manner shown in
Listing 13-17.

310!!!Chapter 13

dns_header_t* header = (dns_header_t *)packet.bytes;

header->flags |= htons(0x8000);
header->flags &= ~htons(0xF);
header->flags |= htons(0x3);

Listing 13-17: Crafting an NXDOMAIN response

The code expects a DNS packet in a mutable data object. It !rst type-
casts the packet’s bytes to a dns_header_t pointer. Next, it sets the QR bit of the
flags !eld in the header to indicate that the packet is a response. Following
this, it clears the RCODE (response code) bits before setting just the NXDOMAIN
response code. You can read more about the DNS header and these !elds in
the RFP 1035 that de!nes the technical speci!cations of DNS.6

Classifying Endpoints
Instead of using a hardcoded block list, a tool could determine whether
to block DNS requests or responses heuristically, for example, by examin-
ing historical DNS records, WHOIS data, and any SSL/TLS certi!cates.7
Let’s look at each of these techniques more closely, using the 3CX supply
chain attack as an example. The 3cx.cloud domain used in the attack is
a legitimate part of 3CX’s infrastructure, but the attacker-controlled
 msstorageboxes .com domain, used by the malicious code introduced into the
application, raises some red #ags:

Historical DNS records At the time of the 3CX supply chain attack
in March 2023, only one DNS record existed for the msstorageboxes .com
domain, which had been registered just a few months prior. Trusted
domains usually have a longer history and many DNS records. On the
other hand, hackers often register domains for their command-and-
control servers just before their attacks and tear them down shortly
thereafter. Of course, hackers sometimes leverage previously legitimate
domains that they either bought through standard domain procure-
ment processes or obtained when domain registration lapsed. Again,
you’ll see this activity re#ected in the domain’s historical DNS records.
Redacted WHOIS data The attackers redacted WHOIS data for
the msstorageboxes .com domain for privacy reasons. It’s unusual for a
large, well-established company to hide its identity. For example, the
legitimate 3cx.cloud domain clearly shows that it’s registered to 3CX
Software DMCC.
Domain name registrar The attackers registered the msstorageboxes
.com domain via NameCheap. Well-established companies often choose
more enterprise-focused domain registrars, such as CloudFlare.

DNS Monitor!!!311

Conclusion
A DNS monitor capable of tracking all requests and responses is a powerful
tool for malware detection. In this chapter, I built on Chapter 7 to describe
how you might implement such a monitor atop Apple’s NetworkExtension
framework. I showed you how to add capabilities to the tool, such as a cache
and blocking capabilities, to extend its functionality.

In the book’s !nal chapter, we’ll pit tools such as this DNS monitor
against real-life Mac malware. Read on to see how each side fares!

Notes
 1. “Network Extensions Entitlement,” Apple Developer Documentation,

https://developer.apple.com/documentation/bundleresources/entitlements/com
_apple_developer_networking_networkextension.

 2. psichel, “com.apple.developer.networking.networkextension Entitlements
Don’t Match PP,” Apple Developer Forums, November 15, 2020, https://
developer.apple.com/forums/thread/667045.

 3. “Signing a Daemon with a Restricted Entitlement,” Apple Developer
Documentation, https://developer.apple.com/documentation/xcode/signing-a
-daemon-with-a-restricted-entitlement.

 4. “Installing System Extensions and Drivers,” Apple Developer Documen-
tation, https://developer.apple.com/documentation/systemextensions/installing
-system-extensions-and-drivers?language=objc.

 5. See https://github.com/objective-see/LuLu.

 6. See “Domain Names—Implementation and Speci!cation,” RFC 1035,
Internet Engineering Task Force, https://datatracker.ietf.org/doc/html/
rfc1035.

 7. Esteban Borges, “How to Perform Threat Hunting Using Passive DNS,”
Security Trails, https://securitytrails.com/blog/threat-hunting-using-passive-dns.

https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_developer_networking_networkextension
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_developer_networking_networkextension
https://developer.apple.com/forums/thread/667045
https://developer.apple.com/forums/thread/667045
https://developer.apple.com/documentation/xcode/signing-a-daemon-with-a-restricted-entitlement
https://developer.apple.com/documentation/xcode/signing-a-daemon-with-a-restricted-entitlement
https://developer.apple.com/documentation/systemextensions/installing-system-extensions-and-drivers?language=objc
https://developer.apple.com/documentation/systemextensions/installing-system-extensions-and-drivers?language=objc
https://github.com/objective-see/LuLu
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035
https://securitytrails.com/blog/threat-hunting-using-passive-dns

	Cover
	Title Page
	Copyright
	Dedication
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Foreword
	Acknowledgments
	Introduction
	What You’ll Find in This Book?
	Who Should Read This Book?
	The Code and Malware Specimens
	Development Enviornment
	Code Signing Requirements
	Entitlements

	Safely Analyzing Malware
	Additional Resources
	Books
	Websites

	Notes

	Part I: Data Collection
	1. Examining Processes
	Process Enumeration
	Audit Tokens
	Paths and Names
	Identifying Hidden Files and Directories
	Obtaining the Paths of Deleted Binaries
	Validating Process Names

	Process Arguments
	Process Hierarchies
	Finding the Parent
	Returning the Process Responsible for Spawning Another
	Retrieving Information with Application Services APIs

	Environment Information
	Code Signing
	Loaded Libraries
	Open Files
	proc_pidinfo
	lsof

	Other Information
	Execution State
	Execution Architecture
	Start Time
	CPU Utilization

	Conclusion
	Notes

	2. Parsing Binaries
	Universal Binaries
	Inspecting
	Parsing

	Mach-O Headers
	Load Commands
	Extracting Dependencies
	Finding Dependency Paths
	Analyzing Dependencies

	Extracting Symbols
	Detecting Packed Binaries
	Dependencies and Symbols
	Section and Segment Names
	Entropy Calculations

	Detecting Encrypted Binaries
	Conclusion
	Notes

	3. Code Signing
	The Importance of Code Signing in Malware Detection
	Disk Images
	Manually Verifying Signatures
	Extracting Code Signing Information
	Extracting Notarization Information
	Running the Tool

	Packages
	Reverse Engineering pkgutil
	Accessing Framework Functions
	Validating the Package
	Checking Package Notarization
	Running the Tool

	On-Disk Applications and Executables
	Running Processes
	Detecting False Positives
	Code Signing Error Codes
	Conclusion
	Notes

	4. Network State and Statistics
	Host-Based vs. Network-Centric Collection
	Malicious Networking Activity
	Capturing the Network State
	Retrieving Process File Descriptors
	Extracting Network Sockets
	Obtaining Socket Details
	Running the Tool

	Enumerating Network Connections
	Linking to NetworkStatistics
	Creating Network Statistic Managers
	Defining Callback Logic
	Starting Queries
	Running the Tool

	Conclusion
	Notes

	5. Persistence
	Examples of Persistent Malware
	Background Task Management
	Examining the Subsystem
	Dissecting sfltool

	Writing a Background Task Management Database Parser
	Finding the Database Path
	Deserializing Background Task Management Files
	Accessing Metadata
	Identifying Malicious Items

	Using DumpBTM in Your Own Code
	Conclusion
	Notes

	Part II: System Monitoring
	6. Log Monitoring
	Exploring Log Information
	The Unified Logging Subsystem
	Manually Querying the log Utility
	Reverse Engineering log APIs

	Streaming Log Data
	Extracting Log Object Properties
	Determining Resource Consumption

	Conclusion
	Notes

	7. Network Monitoring
	Obtaining Regular Snapshots
	DNS Monitoring
	Using the NetworkExtension Framework
	Activating a System Extension
	Enabling the Monitoring
	Writing the Extension

	Filter Data Providers
	Enabling Filtering
	Writing the Extension
	Querying the Flow
	Running the Monitor

	Conclusion
	Notes

	8. Endpoint Security
	The Endpoint Security Workflow
	Events of Interest
	Clients, Handler Blocks, and Event Handling

	Creating a Process Monitor
	Subscribing to Events
	Extracting Process Objects
	Extracting Process Information
	Stopping the Client

	File Monitoring
	Conclusion
	Notes

	9. Muting and Authorization Events
	Muting
	Mute Inversion
	Beginning Mute Inversion
	Monitoring Directory Access

	Authorization Events
	Creating a Client and Subscribing to Events
	Meeting Message Deadlines
	Checking Binary Origins
	Blocking Background Task Management Bypasses

	Building a File Protector
	Conclusion
	Notes

	Part III: Tool Development
	10. Persistence Enumerator
	Tool Design
	Command Line Options
	Plug-ins
	Persistent Item Types

	Exploring the Plug-ins
	Background Task Management
	Browser Extension
	Dynamic Library Insertion
	Dynamic Library Proxying and Hijacking

	Conclusion
	Notes

	11. Persistence Monitor
	Entitlements
	Applying for Endpoint Security Entitlements
	Registering App IDs
	Creating Provisioning Profiles
	Enabling Entitlements in Xcode

	Tool Design
	Plug-ins
	Background Task Management Events

	XPC
	Creating Listeners and Delegates
	Extracting Audit Tokens
	Extracting Code Signing Details
	Setting Client Requirements
	Enabling Remote Connections
	Exposing Methods
	Initiating Connections
	Invoking Remote Methods

	Conclusion
	Notes

	12. Mic and Webcam Monitor
	Tool Design
	Mic and Camera Enumeration
	Audio Monitoring
	Camera Monitoring
	Device Connections and Disconnections
	Responsible Process Identification

	Triggering Scripts
	Stopping
	Conclusion
	Notes

	13. DNS Monitor
	Network Extension Deployment Prerequisites
	Packaging the Extension
	Tool Design
	The App
	The Extension
	Interprocess Communication

	Building and Dumping DNS Caches
	Blocking DNS Traffic
	Classifying Endpoints
	Conclusion
	Notes

	14. Case Studies
	Shazam’s Mic Access
	DazzleSpy Detection
	Exploit Detection
	Persistence
	Network Access

	The 3CX Supply Chain Attack
	File Monitoring
	Network Monitoring
	Process Monitoring
	Capturing Self-Deletion
	Detecting Exfiltration

	Conclusion
	Notes

	Index
	Back Cover

